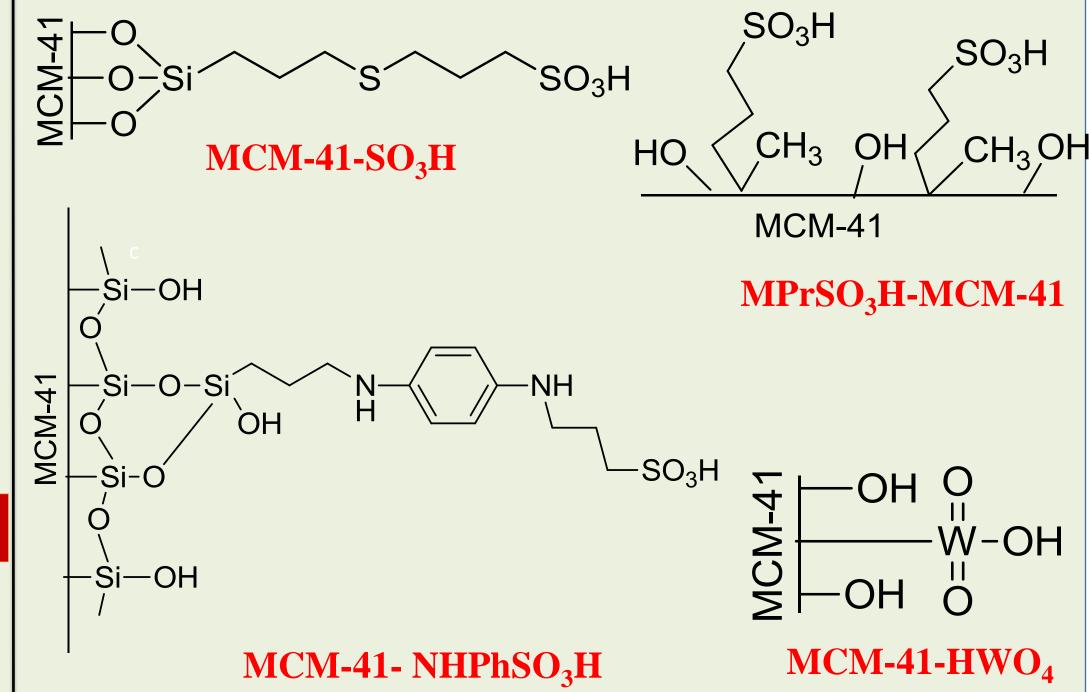


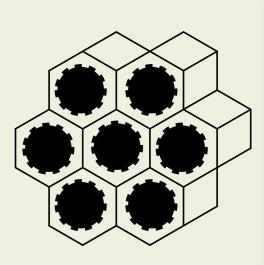
ICMCESA 2022 ACHARYA NARENDRA DEV COLLEGE, DELHI UNIVERSITY

AN ENVIRONMENTALLY BENIGN ROUTE TO CHEMICAL SYNTHESIS THROUGH MCM-41 BASED CATALYSTS

Harsimar Kaur[#],Sharda Pasricha[#], Pragya Gahlot[#] and Kavita Mittal^{*} [#]Department of Chemistry, Sri Venkateswara College, University of Delhi & *Department of Chemistry, Acharya Narendra Dev College, University of Delhi


OBJECTIVE	TABLE: COMPARATIVE STUDIES OF CATALYSTS						
To demonstrate the application of surface functionalized MCM-41 as solid acid catalysts for environmentally	S. No.	Catalyst	Reaction Catalyzed	Time of Reaction (hr)		Recyc labilit y (runs)	Ref.
benign organic transformations.	1	MCM-41-SO ₃ H	➤MCR (synthesis of 3- aminoimidazo[1,2a]pyri	0.33-1 hr	80-93%	4 runs	1
INTRODUCTION			dines or pyrazines ;synthesis of 1- & 5-	6 hr			
Heterogeneous catalysis is an important organic synthesis approach, which is vital for the advancement of green			 substituted 1H- tetrazole); ➢ Esterification of long chain alcohol with oleic 	0 11	>90% mol	-	2
chemistry-basedresearch.Heterogeneouscatalystsarefavoured	2	Sulfate-ZrO ₂ immobilized on	acid Pechmann condensation	2 hr	99.3%	4 runs	3
		MCM-					

- over homologous equivalents for a variety of organic transformations because of their :
- •better stability
- •product selectivity, recyclability and reusability,
- ease of separation from the reaction medium,
- Crystalline porous materials such as mesoporous silicas, metal–organic frameworks (MOFs), and zeolites are some examples of heterogeneous catalysts
- Use of solid acid catalysts minimize the production of acidic waste, reactor and plant corrosion, production of toxic effluents and can be safely disposed of.


RESULTS & DISCUSSION

It is proved through this study that surface functionalized MCM-41 leads

	41(SZ/MCM41)					
4	MCM-41-	Friedel Craft Reaction		95%(TBP	severa	4
	NHPhSO ₃ H			E)	1	
5	MPrSO ₃ H-MCM-	➤Transesterification	2 hr	96.6%	4	5
	41	reaction	2 hr		times	6
		➤cyclodehydration				
6	MCM-41-HWO ₄	Preparation of pyrrolo[2,1- a]isoquinoline derivatives	3-8 hr	65-87%	-	7
7	CA/MCM	one pot synthesis of xanthenes	0.5 hr	94.6%	4 runs	8.

to a variety of novel and need-based catalyst systems that can be used to catalyze reactions like Pechmann condensation, dehydration, esterification, transesterification, Friedel Craft reaction and multicomponent synthesis of heterocycles.

FUNCTIONALISED MCM-41

- INC. PRODUCT YIELD
- INC. CHEMO SELECTIVITY
- BETTER RECYCLABILITY
- REDUCED AGGLOMERATION

REFERENCES

- 1) M. Naeimabadi, S. H. Javanshir, A. Maleki, M. G. Dekamin, Scientia Iranica 2016, 23, 2724–2734.
- A. R. O. Ferreira, J. Silvestre-Albero, M. E. Maier, N. M. P. S. Ricardo, C. L. Cavalcante Jr, F. M. T. Luna, Brazilian Journal of Chemical Engineering 2021 2022, 1–10.
- 3) A. A. Ibrahim, R. S. Salama, S. A. El-Hakam, A. S. Khder, A. I. Ahmed, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 616, 126361.
- 4) F. Adam, C. W. Kueh, Applied Catalysis A: General 2015, 489, 162–170
- S. Karnjanakom, S. Kongparakul, C. Chaiya, P. Reubroycharoen, G. Guan, C. Samart, Journal of Environmental Chemical Engineering 2016, 4, 47–55
- 6) S. Kaiprommarat, S. Kongparakul, P. Reubroycharoen, G. Guan, C. Samart, Fuel 2016, 174, 189–196.
- 7) B. Karami, M. Farahi, S. Akrami, D. Elhamifar, New Journal of Chemistry 2018, 42, 12811–12816.
- M. A. Mannaa, H. M. Altass, R. S. Salama, Environmental
 Nanotechnology, Monitoring and Management 2021, 15, 100410.

Presented at ICMCESA 2022@ANDC, India

Acknowledgment: We are thankful to the Principals of Sri Venkateswara College, Acharya Narendra Dev College, University of Delhi, for the library resources and technical support provided.